Händlerauswahl

Wählen Sie den Händler aus, den Sie für Ihren Einkauf nutzen möchten.

Händler

Gautzsch
Empfohlener Händler
Lichtzentrale
Limmert
Überspannungsschutz bedeutet Schadensprävention
Weidmüller

Überspannungsschutz bedeutet Schadensprävention

F.1 Überspannungsschutz für Photovoltaik F 1296370000 – 2012/2013 Inhalt Überspannungsschutz für Photovoltaik Überspannungsschutz für Photovoltaik Applikationsbeispiel Photovoltaik F.2

F.2 Überspannungsschutz für Photovoltaik F 1296370000 – 2012/2013 Applikationsbeispiel Photovoltaik Überspannungsschutz bedeutet Schadensprävention Photovoltaik-(PV-)Anlagen zur Nutzung regenerativer Energien sind aufgrund ihrer exponierten Lage und der großflächigen Ausdehnung besonders stark durch Blitzentladungen gefährdet. Beschädigungen an Einzelsegmenten oder der Ausfall der gesamten Anlage kann die Folge sein. Blitzströme und Überspannungen sind sehr häufig die Ursache von Sachschäden an Wechselrichtern und PV-Modulen. Diese Schäden sind für jeden Betreiber einer Photovoltaik-Anlage nicht selten mit weiteren Kosten verbunden: Ihnen entstehen nicht nur hohe Reparaturkosten, sondern auch die Wirtschaftlichkeit Ihrer Anlage ist stark beeinträchtigt. Deshalb sollte eine Photovoltaik- Anlage auch in jedem Fall in das bestehende Blitzschutz- und Erdungskonzept integriert werden. Um diese Ausfälle zu vermeiden, müssen aufeinander abge- stimmte Blitz- und Überspannungsschutz-Konzepte eingesetzt werden. Wir unterstützen Sie dabei: damit Ihre Anlage störungsfrei arbeitet und Sie die errechneten Erträge auch tatsächlich erzielen! Sichern Sie deshalb Ihre Photovoltaik-Anlage mit Blitz- und Überspannungsschutz von Weidmüller: • Zum Schutz Ihres Gebäudes und der PV-Anlage • Zur Erhöhung der Anlagenverfügbarkeit • Zur Sicherung Ihrer Investition

F.3 Überspannungsschutz für Photovoltaik F 1296370000 – 2012/2013 Applikationsbeispiel Photovoltaik Normen und Anforderungen Bei der Errichtung einer Photovoltaik-Anlage müssen in jedem Fall die geltenden Normen und Richtlinien zum Überspannungs- schutz berücksichtigt werden. Der europäische Normentwurf DIN VDE 0100 Teil 712 / E DIN IEC 64/1123/CD (Errichten von Niederspannungsanlagen; Anforderungen für spezielle Anlagen und Räume; Photovoltaik- Versorgungssysteme) oder auch die internationale Errichtungs- bestimmung für PV-Anlagen – IEC 60364-7-712 – beschreiben die Auswahl und Errichtung des Überspannungsschutzes für die PV-Anlage und empfehlen Überspannungsschutz-Geräte zwischen PV-Generatoren. Die VdS-Schadenverhütung fordert in ihrer VdS-Publikation 2010 für Gebäude mit einer PV-Anlage 10 kW Blitz- und Überspannungsschutz nach der Schutzklasse III. Damit Ihre Anlage zukunftssicher errichtet wird, entsprechen unsere Komponenten selbstverständlich den Anforderungen. Weiterhin ist eine europäische Norm für Überspannungsschutz- Komponenten in Vorbereitung. Diese Norm wird Vorgaben ma- chen, inwieweit ein Überspannungsschutz in PV-Anlagen auf der DC-Seite konzipiert sein muss. Diese Norm lautet derzeit: prEN 50539-11. Eine ähnliche Norm ist derzeit schon in Frank- reich in Kraft getreten und lautet: UTE C 61-740-51. Nach beiden Normen sind die Weidmüller Produkte derzeit getestet und bieten daher ein erhöhtes Maß an Sicherheit. Dachfläche nach Schadensereignis

F.4 Überspannungsschutz für Photovoltaik F 1296370000 – 2012/2013 Applikationsbeispiel Photovoltaik Bestens geschützt mit Überspannungsschutz von Weidmüller Unsere Überspannungsschutz-Module der Klasse I und Klasse II (B- und C-Ableiter) sorgen dafür, dass auftretende Spannungen ausreichend schnell begrenzt und Ströme sicher abgeleitet werden. Auf diese Weise vermeiden Sie teure Schäden oder sogar Ausfälle an Ihrer Photovoltaik-Anlage. Für Gebäude mit oder ohne Blitzschutzanlage – wir haben für jede Applikation die passenden Produkte! Die Module liefern wir Ihnen auf Wunsch individuell konfiguriert und verdrahtungsfertig in ein Gehäuse integriert. Einsatz von Überspannungsschutz-Geräten (SPD) in Photovoltaik-Anlagen Beim Einsatz von Überspannungsschutzgeräten (engl.: surge protective device = SPD) in Photovoltaik-Anlagen gilt es einige Besonderheiten zu beachten. Im Gegensatz zu Anwendungen von SPDs in Wechselspannungssystemen handelt es sich bei einer Photovoltaik-Anlage um eine Gleichspannungsquelle mit spezifischen Eigenschaften. Beim Anlagenkonzept sind diese spezifischen Eigenschaften zu berücksichtigen und die SPDs daraufhin abzustimmen. So sind SPDs für PV-Anlagen sowohl für eine maximale Leerlaufspannung (U OC STC = Spannung des unbelasteten Stromkreises unter Standardprüfbedingungen) des Solargenerators als auch hinsichtlich einer maximalen Anlagenverfügbarkeit und Sicherheit auszulegen. Die Photovoltaik ist eine elementare Säule der Energiegewinnung im Bereich der erneuerbaren respektive regenerativen Energien. Äußerer Blitzschutz Aufgrund ihrer großflächigen Ausdehnung und der zumeist exponierten Lage gefährden atmosphärische Entladungen – wie Blitze – Photovoltaik-Anlagen in besonderem Maße. Zu unterscheiden sind hierbei direkte Blitzeinwirkungen und sogenannte indirekte (induktive und kapazitive) Einwirkungen. Die Notwendigkeit des Blitzschutzes ergibt sich einerseits aus den normativen Forderungen und hängt andererseits auch von der Applikation selbst ab, sprich, ob es sich etwa um eine Gebäude- oder eine Feldinstallation handelt. Bei Gebäude- installationen wird unterschieden zwischen der Installation des PV-Generators auf dem Dach eines öffentlichen Gebäudes – mit vorhandener Blitzschutzanlage – und der Installation auf einem Scheunendach – ohne Blitzschutzanlage. Feldinstallationen bieten aufgrund der großflächigen Module gleichfalls große potenzielle Angriffs flächen, hierbei ist ein äußerer Blitzschutz in jedem Fall empfehlenswert, um direkte Blitzeinschläge zu verhindern. Normative Hinweise finden sich in der IEC 62305-3 (VDE 0185-305-3), Beiblatt 2 (Auslegung nach Schutzklasse bzw. Gefährdungspegel LPL III) [2] und Beiblatt 5 (Blitz- und Überspannungsschutz für PV-Stromversorgungssysteme sowie in der VdS-Richtlinie 2010 [3], (PV-Anlage 10 kW, dann Blitzschutz erforderlich). Zusätzlich werden Überspannungs- schutz -Maßnahmen gefordert. So ist der PV-Generator vorzugsweise durch eine getrennte Fang einrichtung zu schützen. Ist jedoch ein direkter Anschluss des PV-Generators nicht vermeidbar, wird also beispielsweise der Trennungs- abstand nicht eingehalten, dann gilt es die Auswirkungen von Blitzteilströmen zu beachten. Es sollten grundsätzlich geschirmte Generatorhauptleitungen verwendet werden, um induzierte Überspannungen möglichst gering zu halten. Zusätzlich lässt sich bei ausreichendem Schirmquerschnitt (mindestens 16 mm² Cu) der Kabelschirm zur Führung von Blitzteilströmen nutzen. Gleiches gilt für den Einsatz von geschlossenen Metallgehäusen. Bei Kabel und Metallgehäusen ist die Erdung beidseitig auszuführen. Damit befindet sich die Generatorhauptleitung (DC-Seite) in der LPZ 1 (engl.: lightning protection zone), das heißt, ein Überspannungsschutz-Gerät SPD vom Typ 2 genügt. Andernfalls wäre ein SPD vom Typ 1 erforderlich. Einsatz und korrekte Auslegung von Überspannungs- schutz-Geräten Allgemein können der Einsatz und das Auslegen von SPDs in Niederspannungsanlagen auf Wechselstromseite als Standard betrachtet werden, hingegen sind der Einsatz und die richtige Auslegung für PV-Gleichstromgeneratoren immer noch eine Herausforderung. Denn erstens verfügt ein Solargenerator über eigene Besonderheiten, und zweitens werden SPDs im Gleich- spannungskreis eingesetzt. Konventionelle SPDs sind typischer- weise für Wechsel- und nicht für Gleichspannungssysteme entwickelt worden. Seit Jahren existieren hierzu einschlägige Produktnormen [4], die sich prinzipiell auch auf Gleichspan- nungsanwendungen übertragen lassen. Jedoch wurden früher noch relativ niedrige PV-Systemspannungen realisiert, heute liegen sie bereits um etwa 1.000 V DC im unbelasteten PV- Kreis. Derart hohe Systemgleichspannung gilt es allerdings mit ge eigneten Überspannungsschutz-Geräten zu beherrschen. An welchen Stellen einer PV-Anlage SPDs technisch sinnvoll und zweckmäßig zum Einsatz kommen, hängt vorrangig von der Anlagenart, dem Anlagenkonzept und der räumlichen

F.5 Überspannungsschutz für Photovoltaik F 1296370000 – 2012/2013 Ausdehnung ab. Abbildung 2 und 3 verdeutlichen den prinzipiellen Unterschied: erstens ein Gebäude mit äußerem Blitzschutz und einer auf dem Dach montierten PV-Anlage (Gebäudeinstallation), zweitens eine weitläufige PV-Solar- generator anlage (Feldinstallation), ebenfalls mit einer äußeren Blitzschutzanlage. Im ersten Fall ist – aufgrund kurzer Leitungslängen – lediglich der Schutz des DC-Eingangs zum Wechselrichter realisiert, im zweiten Fall befinden sich SPDs sowohl im Solargeneratoranschlusskasten (zum Schutz der Solarmodule) als auch am DC-Eingang zum Wechselrichter (Schutz des Wechselrichters). Sobald die Leitungswege zwischen PV-Generator und Wechselrichter länger als 10 m sind (Abbildung 2), sollten in der Nähe des PV-Generators und auch in der Nähe des Wechselrichters jeweils SPDs installiert werden. Der Schutz der AC-Seite, das heißt Wechselrichter-Ausgang und Netzeinspeisung, muss dann standardmäßig mit SPDs vom Typ 2 am Wechselrichter-Ausgang und – bei einer Gebäude- installation mit äußerem Blitzschutz am Netzeinspeise punkt – mit einem SPD-Typ-1-Ableiter versehen werden. Besonderheiten auf der DC-Solargeneratorseite Beim Schutz der DC-Seite kamen bislang stets SPDs für normale Netzwechselspannungen zum Einsatz, wobei jeweils L+ und L– gegen Erdpotenzial schutzbeschaltet wurden. Ausgelegt waren die SPDs dabei für mindestens 50 Prozent der maximalen Solargeneratorleerlaufspannung. Bei langjähriger Nutzung kann ein Isolationsfehler im PV-Generator auftreten. Dieser Fehlerzustand in der PV-Anlage hat dann zur Folge, dass nun die volle PV-Generatorspannung an dem SPD im nicht fehler behafteten Pol anliegt und eine Überlastung nach sich zieht. Werden SPDs auf Basis von Metalloxid-Varistoren durch zu hohe permanente Dauerspannungen beansprucht, so führt dies ggf. zur Zerstörung bzw. zum Auslösen der Abtrennvorrichtung. Gerade bei PV-Anlagen mit hohen Systemspannungen kann bei der Aktivierung der Abtrenn- vorrichtung im ungünstigsten Fall eine Brandentwicklung bedingt durch den stehenden Schaltlichtbogen nicht restlos ausgeschlossen werden. Auch vorgelagerte Überstromschutz- organe (Sicherungen) sind hier keine Lösung, da der Kurz- schluss strom des PV-Generators nur geringfügig höher ist als der des Nennstroms. Heute werden zunehmend PV-Anlagen mit Systemspannungen um 1.000 V DC realisiert, um die Leistungsverluste möglichst gering zu halten. Damit SPDs auch solch hohe Systemspannungen beherrschen können, hat sich als Quasistandard die sogenannte Y-Schaltung Applikationsbeispiel Photovoltaik Abbildung 1: Prinzipdarstellung aus der DIN VDE 0100-712 Abbildung 2: Gebäudeinstallation mit äußerer Blitzschutz- anlage und Einhaltung des Trennungsabstandes Abbildung 3: Feldinstallation mit äußerer Blitzschutz- anlage

F.6 Überspannungsschutz für Photovoltaik F 1296370000 – 2012/2013 – bestehend aus drei Varistoren – etabliert und bewährt (Abbildung 4). Bei einem Isolationsfehler liegen dann immer noch zwei Varistoren in Reihe, was eine Überlastung des SPDs effektiv verhindert. Als Resümee lässt sich festhalten: Eine absolut leckstromfreie Schutzbe schaltung wird realisiert und eine ungewollte Aktivierung der Abtrennvorrichtung verhindert. Hierdurch wiederum wird das bereits oben beschriebene Szenario einer möglichen Brandentwicklung wirksam verhindert. Gleichzeitig wird eine Beeinflussung einer Isolationsüberwachungs einrichtung ebenfalls verhindert. Das heißt, tritt ein Isolationsfehler auf, dann befinden sich immer zwei Varistoren in Serie. Dadurch wird die Forderung erfüllt, dass Erdschlüsse unbedingt verhindert werden müssen. Weidmüller bietet hierzu mit dem SPD-Typ-2-Ableiter PU II 3 1.000 V DC bis zu U CPV-Modus +/–, –/PE, +/PE = 1.000 V DC eine ausgereifte, praxisgerechte Lösung, das heißt, dass dieses Produkt nachweislich nach allen aktuellen Normen geprüft ist (UTE C 61-740-51 und prEN 50539-11) (Abbildung 4). Damit bieten wir das höchste Maß an Sicherheit für den Einsatz in DC-Schaltkreisen. Anwendungsfälle in der Praxis Wie bereits beschrieben, werden in der Praxis Gebäude- und Feldinstallationen unterschieden. Ist ein äußerer Blitzschutz vorhanden, so ist der PV-Generator vorzugsweise in diesen als isolierte Fangeinrichtung zu integrieren. Dabei muss der Trennungsabstand gemäß IEC 62305-3 (VDE 0185-305-3) eingehalten werden. Kann dieser nicht eingehalten werden, so sind Blitzteilströme zu berücksichtigen. Die Blitzschutznorm IEC 62305-3 (VDE 0185-305-3), Beiblatt 2 sagt dazu im Abschnitt 17.3: „Es sollen geschirmte Generatorhauptleitungen zur Reduzierung von induzierten Überspannungen verwendet werden.“ Bei ausreichendem Querschnitt (mindestens 16 mm² Cu) kann der Kabelschirm auch zur Führung von Blitzteilströmen genutzt werden. Auch im ABB-(„Ausschuss für Blitzschutz und Blitzforschung im VDE“)-Merkblatt [5] – Blitzschutz von Photovoltaik -Anlagen – steht, dass die Generatorhauptleitung geschirmt ausgeführt werden soll. Dadurch lassen sich Blitzstromableiter (SPD Typ 1) einsparen, gleichwohl sind jedoch Überspannungsableiter (SPD Typ 2) beidseitig notwendig. Wie Abbildung 5 zeigt, gibt es eine praxisgerechte Lösung durch eine geschirmte Generatorhauptleitung, wodurch eine Zone LPZ 1 erreicht wird. Hierdurch wird der Einsatz vom SPD-Typ-2- Ableiter normen konform umgesetzt. Applikationsbeispiel Photovoltaik Converter Solar Panel DC AC Isolationsfehler gegen PE Insulationfault toward PE Uoc 1000 Vc MOV = Metall Oxyd Varistor U U U MOV MOV MOV Abbildung 4: Y-Schutzbeschaltung mit drei Varistoren Abbildung 5: Gebäudeinstallation mit äußerem Blitzschutz und Nichteinhaltung des Trennungsabstandes

F.7 Überspannungsschutz für Photovoltaik F 1296370000 – 2012/2013 Installationsfertige Lösungen Um Montagen in der Praxis so einfach wie möglich zu realisieren, bietet Weidmüller installationsfertige Lösungen zum Schutz der DC- und der AC-Seite am Wechselrichter an. Die Installations- zeiten reduzieren Plug-and-play-PV-Boxen. Auf Anfrage übernimmt Weidmüller gleichfalls kundenspezifische Assemblierungen. Mehr Informationsmaterial unter www.weidmueller.com. Hinweis: Länderspezifische Normen und Richtlinien sind zu beachten. Literatur [1] DIN VDE 0100 (VDE 0100) Teil 712: 2006-06 Anforderungen für Betriebsstätten, Räume und Anlagen besonderer Art – Solar-Photovoltaik-(PV-)Stromversorgungssysteme [2] DIN EN 62305-3 (VDE 0185-305-3) 2006-10 Blitzschutz, Teil 3: Schutz von baulichen Anlagen und Personen Beiblatt 2 Auslegung nach Schutzklasse bzw. Gefährdungspegel LPL III Beiblatt 5 Blitz- und Überspannungsschutz für PV-Stromversorgungssysteme [3] VdS-Richtline 2010: 2005-07 Risikoorientierter Blitz- und Überspannungsschutz; Richtlinien zur Schadenverhütung VdS Schadenverhütung Verlag [4] DIN EN 61643-11 (VDE 675-6-11): 2007-08 Überspannungsschutz für Niederspannung – Teil 11: Überspannungsschutzgeräte für den Einsatz in Niederspannungsanlagen – Anforderungen und Prüfungen [5] IEC 62305-3 Protection against lightning – Part 3: Physical damage to structures and life hazard [6] IEC 62305-4 Protection against lightning – Part 4: Electrical and electronic systems within structures [7] prEN 50539-11 Low-voltage surge protective devices – Surge protective devices for specific application including d.c. – Part 11: Requirements and tests for SPDs in photovoltaic applications [8] Französische Produktnorm für Überspannungsschutz im DC-Bereich UTE C 61-740-51 Applikationsbeispiel Photovoltaik PU II 3 1000 V DC PV • Ein 1.000-V-Überspannungs- schutzableiter für DC-seitigen Einsatz Weitere Informationen siehe Kapitel C. PU II 4 280 V / 40 kA • 230/400-V-Überspannungs- schutzableiter • Geeignet für das TN-C-S- Energienetz • Hohe Energieabsorption mit I max : 40 kA je Scheibe Weitere Informationen siehe Kapitel C. PU-I-LCF-Serie • 230/400-V-„Kombinierter Blitzstrom- und Überspan- nungsableiter“, leckstromfrei • 1-polige Version mit I imp : 30 kA • Hohe Energieabsorption mit I max : 80 kA je PU BC • Möglichkeit des V-förmigen Leiteranschlusses Weitere Informationen siehe Kapitel C.

F.8 Überspannungsschutz für Photovoltaik F 1296370000 – 2012/2013 Applikationsbeispiel Photovoltaik (Beispielzeichnung ohne Gewähr) PU II 3 1000 V DC PV Y-Schaltung PU II 3 1000 V DC PV Bei großer Distanz 10 m zwischen PV-Generator und Wechselrichter PU II 4 280 V / 40 kA Bei großer Distanz 10 m zwischen Wechselrichter und Hauseinspeisung PU-I-LCF-Serie Bei vorhandener Blitzschutzanlage Modularer Einsatz unserer Überspannungsschutz- Komponenten Ist am Gebäude bereits eine Blitzschutzanlage vorhanden, muss diese den höchsten Punkt der gesamten Anlage bilden. Sämtliche Module und Leitungen der Photovoltaik-Anlage sind unterhalb der Fangeinrichtung zu installieren. Dabei müssen Trennungsabstände von mindestens 0,5 m bis 1 m (je nach Risikoanalyse der IEC 62305-2) eingehalten werden. Ferner erfordert die äußere Blitzschutzanlage Klasse I (AC-seitig) die Installation eines Blitzstromableiters der Klasse I in der Elektroeinspeisung des Gebäudes. Sollte keine Blitzschutz- anlage vorhanden sein, ist der Einsatz von Klasse-II-Ableitern (AC-seitig) ausreichend.